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Abstract. The global Radial Basis Functions (RBFs) may lead to ill-
conditioned system of linear equations. This contribution analyzes con-
ditionality of the Gauss and the Thin Plate Spline (TPS) functions.
Experiments made proved dependency between the shape parameter and
number of RBF center points where the matrix is ill-conditioned. The
dependency can be further described as an analytical function.
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1 Introduction

Interpolation and approximation of scattered data is a common problem in many
engineering and research areas, e.g. Oliver et al. [1] use interpolation (kriging)
method on geographical data, Kaymaz [2] finds usage of this technique in struc-
tural reliability problem. Sakata et al. [3] model wing structure with an approx-
imation method, Joseph et al. [4] even create metamodels. The RBF methods
are also used in the solution of partial differential equations (PDE) especially in
connection with engineering problems.

To solve interpolation and approximation problems, we use two main
approaches:

– Tesselated approach – it requires tesselation of the data domain (e.g. Delaunay
triangulation) to generate associations between pairs of points in the tesse-
lated cloud of points. Some algorithms were developed (Lee et al. [5] show
two of them, Smolik et al. [6] show a fast parallel algorithm for triangulation
of large datasets, Zeu et al. [7] recently use tesselation for seismic data etc.)
for triangulation and tesselation. Even though it seems simple, tesselation is
a slow process in general1.

1 The Delaunay triangulation has time complexity of O
(
n�d/2�+1

)
, where d is number

of tesselated dimensions.
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– Meshless approach – a method based on RBFs can be used, which does not
require any from of tesselation. Hardy [8] shown that the complexity of this
approach is nearly independent to the problem dimensionality, therefore it is
a better alternative to tesselation in higher dimensions. On the other hand,
RBF methods require solving a system of linear equations which leads to
some problems as well.
There are several meshless approaches e.g. Fasshauer [9] implements some of
the meshless algorithms in MATLAB, Franke [10] compares some interpola-
tion methods of the scattered data.
Conditionality of the matrix of a linear system of equation is a key element
to determine whether the system is well solvable or not.

RBF research was recently targeted:

– to find out RBF applicability for large geosciences data, see Majdisova [11],
– to interpolate and approximate vector data, see Smolik [12],
– to study robustness of the RBF data for large datasets, see Skala [13,14].
– to find out optimal variable shape parameters, see Skala [15].

This research is aimed to find optimal (or at least suboptimal) shape param-
eters of the RBF interpolation. This contribution describes briefly analysis of
some of the most commonly used RBFs and determines its problematic shape
parameters, causing ill-conditionality of the equation system matrix.

2 RBF Approximation and Interpolation

The basic idea behind the RBF approach is the partial unity approach, i.e.
summing multiple weighted radial basis functions together to obtain complex
interpolating function. The Fig. 1 presents two RBFs (marked by red color)
forming an interpolating final function (blue one).

The RBF approach was introduced by Hardy [8] and modified in [16]. Since
then, this method has been further developed and modified. Majdisova et al. [17]
and Cervenka et al. [18] proposed multiple placement methods. There are also
some behavioural studies of the shape parameters, e.g. searching the optimal
ones from Wang et al. [19], Afiatdoust et al. [20] or using different local shape
parameters from Cohen et al. [21], Sarra et al. [22], Skala et al. [15].

This contribution analyzes the worst cases of the RBF matrix conditionality
in order to avoid bad shape parameters, therefore the bad shape parameters can
be avoided.

2.1 RBF Method Principle

The RBF interpolation is defined by Eq. 1,

h (xi) =
N∑

j=1

λjϕ (||xi − xj ||) =
N∑

j=1

λjϕ (rij) (1)
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Fig. 1. Two RBFs (in red) and result of the addition (in blue). (Color figure online)

where h (xi) is the resulting interpolant, N is the number of RBFs, λi is a weight
of the i-th RBF, ϕ is the selected RBF and rij is a distance between points xi

and xj . The points xj are all the points on the sampled original function, where
the function value is known.

The RBF approximation is slightly different, see Eq. 2. The notation is the
same as above, however, xj are replaced by reference points ξj , j = 1, . . . , M .
Some arbitrary (sufficiently small M � N) number of points from the data
domain are taken instead. More details can be found in Skala [23].

h (xi) =
M∑

j=1

λjϕ (||xi − ξj ||), i = 1, . . . , N (2)

In both cases, i.e. approximation and interpolation, the equations can be
expressed in a matrix form as:

Aλ = b, b = h (x) ,Aij = ϕij (3)

In the interpolation case, the matrix A is a square matrix, while in the approx-
imation case, the matrix A is rectangular and the result is an overdetermined
system of linear equations. In this case, we do not obtain exact values for the
already calculated reference points ξj .

2.2 RBF Classification

There are many RBFs and still new ones are being proposed e.g. Menandro [24].
In general, we can divide the RBFs into two main groups, “global” and “local”
ones, see Fig. 3 and Fig. 2.
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– Global RBFs influence the interpolated values globally. The matrix A will
be dense and rather ill-conditioned. Typical examples of the global RBF are
the Gaussian, the TPS or the inverse multiquadric RBFs.

– Local RBFs have limited influence to a limited space near its centre point
(hypersphere, in general). The advantage of the local RBFs is that they lead
to a sparse matrix A. RBFs belonging to this group are called “Compactly
Supported” RBFs (CS-RBFs, in short).

Global RBFs are functions, which influence is not limited and its value may
be nonzero for each value in its domain. The well-known ones are the Gaussian
or the TPS functions. However, there are other functions, see e.g. Table 1 or Lin
et al. [25]. Mentioned functions are illustrated in Fig. 2.

Fig. 2. Some of the global RBF functions.

Table 1. Various global RBF functions.

Name Expression

Gaussian RBF e−αr2

TPS RBF 1
2
r2 log

(
βr2

)

Multiquadratic RBF 1
1+(εr)2

Inverse Multiquadratic RBF 1√
1+(εr)2

The CS-RBF or compactly supported radial basis function is a function
limited to a given interval. Some of CS-RBFs are presented on Fig. 3. Generally,
these functions are limited to an interval (usually r ∈ 〈0, 1〉) otherwise the value
equals zero. These functions are defined by Eq. 4, where P (r) is a polynomial
function, r is the distance of two points and q is a parameter.
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Fig. 3. Some of the CS-RBF functions. [26] (edited)

ϕ (r) =

{
(1 − r)q

P (r) 0 � r < 1,

0 r � 1
(4)

It should be noted that some new CS-RBFs have been recently defined by Menan-
dro [24].

3 Matrix Conditionality

Assuming a linear system of equations Ax = b, the condition number of the
matrix A describes how the result (vector b) can change when the input vector
x is slightly modified. This number describes sensitivity to changes in the input
vector. We aim for the lowest possible sensitivity, in order to get reasonable
results. In terms of linear algebra, we can define conditionality of a normal
matrix A using eigenvalues λi ∈ C

1 as:

κ (A) =
|λmax (A) |
|λmin (A) | (5)

where κ (A) is the condition number of the normal matrix A, |λmax (A)| is the
highest absolute eigenvalue of the matrix A and |λmin (A)| is the lowest absolute
eigenvalue of the matrix.

The higher the value κ (A) is, the more sensitive the matrix A is, meaning
that κ (A) = 1 is the best option, forcing all eigenvalues λ to have the same
value.

It is worth noting that the conditionality is closely related to the matrix
determinant. In the case when the determinant is zero, we have at least one
eigenvalue equaling zero, so the conditionality will be infinite, see Eq. 6.
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det (A) = 0 → |λmin (A)| = 0 → κ (A) = +∞ ⇔ |λmax (A)| 	= 0 (6)

This is only a brief introduction to the matrix conditionality. Details can be
found in e.g. Ikramov [27] or Skala [14], some experimental results can be found
in Skala [28].

4 Experimental Results of RBF Approximation

In the RBF approximation problem, we normally have two main issues to deal
with – selecting number of RBFs and its global shape parameter. To obtain a
robust solution, the matrix A of the linear system of equations should not be ill-
conditioned. We did some experiments to show how the condition number of the
matrix A depends on the number of RBFs (N) used and a shape parameter (α or
β, see below). To make things easier, all RBFs have been distributed uniformly
on x ∈ 〈0, 1〉 interval and have the same constant shape parameter.

4.1 Gaussian RBF

The Gaussian RBF is defined by Eq. 7. It is the unnormalized probability den-
sity function of a Gaussian distribution centred at zero and with a variance of
1
2α . Variable r denotes the distance from its centre points and α is the shape
parameter.

ϕ (r, α) = e−αr2
(7)

Figure 4 presents dependence of matrix conditionality on Gaussian RBF
shape parameter α and number of uniformly distributed RBF reference points.

A hyperbolic function (Eq. 8) was used to fit extremal points of each curve
(Table 2).

Table 2. Analytical form of first 9 hyperboles.

Hyperbole a b c Hyperbole a b c

1 7.64 38.36 −3.58 6 8.47 1387.35 −30.84

2 13.49 1.93 −7.98 7 17.98 1218.46 −49.14

3 9.17 277.29 −11.95 8 49.16 278.29 −78.53

4 9.44 509.55 −18.37 9 93.81 63.73 16.11

5 12.02 545.66 −31.8

β = a +
b

N + c
(8)

The plot at Fig. 5 describes the situation. These curves describe number of
RBFs N and shape parameter α when the matrix is ill-conditioned.
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Fig. 4. Matrix conditionality values for Gaussian RBF.

Fig. 5. Worst conditionality shape parameters α for Gauss RBF.

4.2 Thin Plate Spline RBF

The Thin Plate Spline (TPS) radial basis function is defined by the Eq. 9. The
TPS was introduced by Duchon [29] and used for RBF approximation afterwards.
Variable r is the same as in the Gaussian RBF – the distance from its centre
point and parameter β is the shape parameter.

ϕ (r, β) =
1
2
r2 log

(
βr2

)
(9)

The Fig. 6 presents a result for a simulated experiment to the recent Gaussian
RBF case using the TPS function instead. There is only one curve which has a
hyperbolic shape similar to the Gaussian RBF case.



Conditionality Analysis of the Radial Basis Function Matrix 37

Fig. 6. Matrix conditionality values for TPS RBFs.
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Fig. 7. Worst conditionality shape parameters β for the TPS RBF.

The Fig. 7 also represents the curve, when the matrix A is close to singular.
The Table 3 presents dependency of the βexp shape parameter for different N as
an function when the matrix A is significantly ill-conditioned.

We obtained a hyperbolic function from the graph on Fig. 7 (coefficients are
rounded to 2 decimal places).

β = 0.79 +
0.36

N − 1.24
(10)
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The Table 3 presents the shape parameters βcalc evaluated for small numbers of
RBF functions according to Eq. 10.

The experimental results presented above led to a question, how the results
are related from the analytical side. This led to the validation of experiments
with two analytical results described in this section.

5 Theoretical Analysis

Let us calculate values of the TPS shape parameter β for N = 3 and N = 4 in
a way that the matrix A will be ill-conditioned (κ (A) = +∞).

It should be noted that the multiplicative constant 1
2 is ommited in the Eq. 11

as it has no influence to the conditionality evaluation. In the first case, i.e. N = 3,
the RBF matrix A has the form (using equidistant distribution of RBF center
points):

A3 =

⎡

⎣
0 r2 log

(
βr2

)
(2r)2 log

(
β4r2

)

r2 log
(
βr2

)
0 r2 log

(
βr2

)

(2r)2 log
(
β4r2

)
r2 log

(
βr2

)
0

⎤

⎦ (11)

Let us explore singularity of the matrix A3, when det (A3) = 0, the deter-
minant will have the form:

r6

∣∣∣∣∣∣

0 log
(
βr2

)
4 log

(
β4r2

)

log
(
βr2

)
0 log

(
βr2

)

4 log
(
β4r2

)
log

(
βr2

)
0

∣∣∣∣∣∣
= 0 (12)

As r 	= 0 for all pairs of different points, limr→0 r2 log
(
r2

)
= 0 and equidis-

tant point distribution.
For the sake of simplicity, we substitute q = log

(
βr2

)
, a = log 4 and use

formula log (ab) = log a + log b so we get:
∣∣∣∣∣∣

0 q 4(q + a)
q 0 q

4(q + a) q 0

∣∣∣∣∣∣
= 0

8(q + a)q2 = 0 → q = 0 ∨ q = −a

log
(
βr2

)
= − log 4 = log

1
4

βr2 =
1
4

β =
1

4r2
(13)

In the experiments, we used interval x ∈ 〈0, 1〉 and with three points (0, 0.5, 1).
The distance between two consecutive points r is 0.5, which led to β = 1. This
exact value we obtained from experiments as well (see Table 3).
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Table 3. βexp-values for TPS RBF for some small N (number of RBFs) obtained by
experiment as well as βcalc values calculated by Eq. 10

N βexp βcalc N βexp βcalc N βexp βcalc

3 1.00000 0.99874 23 0.81338 0.81319 43 0.80535 0.80536

4 0.92206 0.92564 24 0.81264 0.81247 44 0.80515 0.80516

5 0.89118 0.89141 25 0.81197 0.81182 45 0.80496 0.80497

6 0.87182 0.87155 26 0.81135 0.81121 46 0.80477 0.80479

7 0.85909 0.85858 27 0.81078 0.81065 47 0.80459 0.80462

8 0.85002 0.84945 28 0.81025 0.81014 48 0.80442 0.80445

9 0.84324 0.84268 29 0.80976 0.80966 49 0.80426 0.80429

10 0.83799 0.83744 30 0.80930 0.80921 50 0.80410 0.80414

11 0.83379 0.83329 31 0.80888 0.80880 51 0.80395 0.80399

12 0.83037 0.82990 32 0.80848 0.80841 52 0.80380 0.80385

13 0.82753 0.82709 33 0.80811 0.80804 53 0.80366 0.80372

14 0.82512 0.82472 34 0.80776 0.80770 54 0.80353 0.80359

15 0.82306 0.82269 35 0.80743 0.80738 55 0.80340 0.80346

16 0.82128 0.82094 36 0.80711 0.80708 56 0.80328 0.80334

17 0.81973 0.81941 37 0.80682 0.80679 57 0.80316 0.80322

18 0.81835 0.81807 38 0.80654 0.80652 58 0.80304 0.80311

19 0.81713 0.81687 39 0.80628 0.80626 59 0.80293 0.80300

20 0.81605 0.81581 40 0.80603 0.80602 60 0.80282 0.80290

21 0.81507 0.81485 41 0.80579 0.80579 61 0.80272 0.80280

22 0.81418 0.81398 42 0.80557 0.80557 62 0.80262 0.80270

In the second case, i.e. N = 4, a similar approach has been taken. In this
case the matrix A4 is defined as:

A4 =

⎡

⎢⎢⎣

0 r2 log
(
βr2

)
(2r)2 log

(
β4r2

)
(3r)2 log

(
β9r2

)

r2 log
(
βr2

)
0 r2 log

(
βr2

)
(2r)2 log

(
β4r2

)

(2r)2 log
(
β4r2

)
r2 log

(
βr2

)
0 r2 log

(
βr2

)

(3r)2 log
(
β9r2

)
(2r)2 log

(
β4r2

)
r2 log

(
βr2

)
0

⎤

⎥⎥⎦

(14)

Similarly as in the case for N = 3, we can write the det (A4) and declare the
matrix singular if:

r8

∣∣∣∣∣∣∣∣

0 log
(
βr2

)
4 log

(
β4r2

)
9 log

(
β9r2

)

log
(
βr2

)
0 log

(
βr2

)
4 log

(
β4r2

)

4 log
(
β4r2

)
log

(
βr2

)
0 log

(
βr2

)

9 log
(
β9r2

)
4 log

(
β4r2

)
log

(
βr2

)
0

∣∣∣∣∣∣∣∣
= 0 (15)
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Using the substitutions q = log
(
βr2

)
, a = log 4 and b = log 9, we obtain:

∣∣∣∣∣∣∣∣

0 q 4 (q + a) 9 (q + b)
q 0 q 4 (q + a)

4 (q + a) q 0 q
9 (q + b) 4 (q + a) q 0

∣∣∣∣∣∣∣∣
(16)

This can be further expressed as:

(4 (q + a))4 + q4 + q2 (9 (q + b))2

= −2q3 (9 (q + b)) − 2q (4 (q + a))2 (9 (q + b)) − 2q2 (4 (q + a))2

= 256(q + a)4 + q4 + 81q2(q + b)2 − 18q3(q + b) (17)

− 288q(q + a)(q + b)2 − 32q2(q + a)2

This leads to the cubic equation:

(383a − 144b)q3 + (1216a2 + 81b2 − 576ab)q2

+ (1024a3 − 288a2b)q + 256a4 = 0 (18)

Solving this cubic equation (Eq. 18), one real and two complex (complex conju-
gate) roots are obtained:

q1 ≈ −2.2784
q2 ≈ −1.1149 + 0.8239i (19)
q3 ≈ −1.1149 − 0.8239i

As we have four points distributed uniformly on the interval x ∈ 〈0, 1〉, the
distance between two adjacent nodes is r = 1

3 . Now, using the real root of the
Eq. 19, i.e. q = −2.2784, we can estimate the shape parameter β as follows:

q = log
(
βr2

) ≈ −2.2784

βr2 ≈ e−2.2784 ≈ 0.10245 (20)

β ≈ e−2.2784

r2

β ≈ e−2.2784

(
1
3

)2 = 9e−2.2784 ≈ 0.92206

From the experiments, we obtained value β̂ = 0.92206 which is consistent
with this theoretical estimation. Both these analytical examples support the
argument that the experiments made are correct.

It should be noted, that if irregular point distribution is used, i.e. using
Halton points distributions, the ill-conditionality get slightly worse.
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6 Conclusion

In this paper, we discussed some properties of the two well-known RBFs. We
find out that there are some regularities in the shape parameters, where the
RBF matrix is ill-conditioned. Our experiments proved that there are no global
optimal shape parameters from the RBF matrix conditionality point of view.

In the future, the RBF conditionality problem is to be explored for higher
dimension, especially for d = 2, d = 3 and in the context of partial differential
equations.
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